


# **ML4062-MCB**

# **Technical Reference**

**QSFP-DD MCB**MSA Compliant





# Table of Contents

| 1  | Ove                    | rview                             | 3 |  |  |  |  |
|----|------------------------|-----------------------------------|---|--|--|--|--|
|    | 1.1                    | ML4062-MCB QSFP-DD   Key Features | 3 |  |  |  |  |
| 2  | ML4                    | 062-MCB Hardware                  | 3 |  |  |  |  |
|    | 2.1                    | Power-up                          | 3 |  |  |  |  |
|    | 2.2                    | Operating Conditions              | 4 |  |  |  |  |
|    | 2.3                    | LED Indicators                    | 4 |  |  |  |  |
|    | 2.4.1<br>2.4.2         | External HW Control.              | 5 |  |  |  |  |
| 3  | ML4                    | 062-MCB Software                  | 6 |  |  |  |  |
|    | 3.1                    | USB Driver                        | 6 |  |  |  |  |
|    | 3.2                    | GUI                               | 7 |  |  |  |  |
| 4  | Hard                   | dware Revision                    | 7 |  |  |  |  |
| 5  | Firm                   | ware Revision                     | 7 |  |  |  |  |
| 6  | Boot                   | tloader                           | 7 |  |  |  |  |
| Ta | able o                 | f Figures                         |   |  |  |  |  |
| Fi | gure 1:                | On-board LEDs                     | 4 |  |  |  |  |
|    | Figure 2: External I2C |                                   |   |  |  |  |  |
|    | _                      | External Control Signals          |   |  |  |  |  |
| Fi | gure 4:                | Low Speed Signals Schematics      | 6 |  |  |  |  |



## 1 Overview

The ML4062-MCB is designed to provide an efficient and easy method of programming and testing 400G QSFP-DD transceivers and active optical cables. It includes a complete user-friendly GUI supporting all features defined by QSFP-DD MSA and simplifying configuration processes to enable intuitive memory map programming and testing. It is designed to simulate an ideal environment for QSFP-DD transceivers module testing, characterization and manufacturing.

## 1.1 ML4062-MCB QSFP-DD | Key Features

- Supports 8x50G interfaces
- I2C master driven from both on board microcontroller or external pin headers
- 40 GHz Bo-Jiang 2.92mm K Connectors
- Current Sense on each individual voltage net
- Matched differential trace length
- All 8 channels come with matching trace length
- High performance signal integrity traces from K connectors to QSFP-DD host connector.
- On-board LEDs display MSA output alarm states
- On-board pin headers for MSA input control signals
- User friendly GUI for I2C R/W commands and loading custom MSA memory maps
- Four corner testing capability
- USB interface

#### 2 ML4062-MCB Hardware

The subsequent sections cover the essential parts in the hardware, for board operation and testing.

#### 2.1 Power-Up

To power up the ML4062-MCB host, steps are as follow:

- The host TOP is where the cage is mounted
- Two options are available to power up the board:
  - ➤ Using the four pins power connector (J43) that should be connected to 5 V AND 3.3 V taking into account pins distribution, where the SMD jumper (U1) must be populated
  - Using the banana plug (U6) that should be connected to 3.3 V where the SMD jumper (U2) must be populated
- Connect the host to your PC using a Type-B mini to Type-A USB cable.



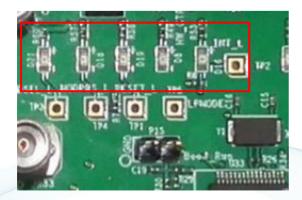
# 2.2 Operating Conditions

According to the powering method described in section 2.1, the input voltage supply must follow the table below.

| Parameter | Symbol | Condition                                       | Min | Typical | Max | Unit |
|-----------|--------|-------------------------------------------------|-----|---------|-----|------|
| +5        | P5V    | Supply from J43 (P5V pin)                       | -   | 5       | -   | V    |
| +3.3      | P3V3   | Supply from J43 (P3V3<br>Pin) OR banana plug U6 | 3.0 | 3.3     | 3.6 | V    |

**Table 1: Voltage Operating Conditions** 

The table below shows the impedance characteristics of the high speed channels.


| Parameter  | Symbol | Condition                | Min | Typical | Max | Unit |
|------------|--------|--------------------------|-----|---------|-----|------|
| I/O Load   | RI     | AC-Coupled, Differential | 90  | 100     | 110 | Ω    |
| Resistance | ΚI     |                          |     |         |     |      |

**Table 2: Channels Impedance characteristics** 

#### 2.3 LED Indicators

The **ML4062-MCB** includes on-board LEDs, for quick debugging and monitoring purposes. LEDs are summarized below:

- LED D3 indicates whether a USB cable is plugged or not.
- LEDs D2 and D4, colored green and red, respectively, are used for diagnostic purposes:
  - If D2 is on: USB is locked and device is recognized by the USB driver
  - > If D4 is on: USB is not connected or USB driver is not found
  - > If both are off: board is not powered correctly or firmware is corrupted
  - > If both are blinking: the board is in Bootloader mode
- Led D8: LPMODE signal monitoring
- LED D19: RESET L signal monitoring
- LED D16: INT L signal monitoring
- LED D18: MODPRS\_L signal monitoring
- LED D21: MODSEL L



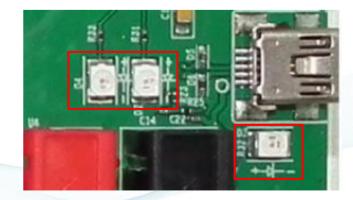



Figure 1: On-board LEDs



# 2.4 Low Speed Signals

#### 2.4.1 External I2C

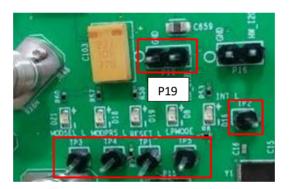
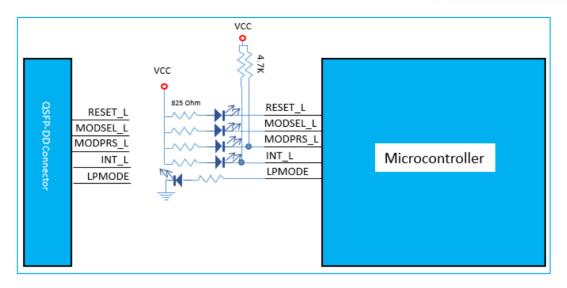

The I2C bus can be accessed externally using U156 pins. In this case a jumper should be placed on pin header P16 (HW\_I2C) shown in the image below.



Figure 2: External I2C

#### 2.4.2 External HW Control


Also, Low Speed Signals are controllable using an external source, this can be done through control signals pin headers. In this case a jumper should be placed on pin header P19 (HW\_CTRL) shown in the image below.



**Figure 3: External Control Signals** 

The low speed signals circuit shown below shows the connection of these signals to the microcontroller and QSFP-DD connector.





**Figure 4: Low Speed Signals Schematics** 

When the jumper is inserted on P19, the output signals are tri-stated from the microcontroller, and hence could be controlled from an external source.

#### 3 MI 4062-MCB Software

The **ML4062-MCB** is accessible and controlled through application software. This software is MSA compliant and provides a user-friendly interface to operate the board and access all its features. The communication between the **ML4062-MCB** board and the software is established through USB connection.

#### 3.1 USB Driver

In order to be able to communicate with the board, user needs to install the USB driver of the **ML4062-MCB**. This is available on the website under the following link (USB Driver icon):

#### https://www.multilaneinc.com/product.php?pn=ML4062-MCB

Below is a brief guide on how to install the USB Driver:

- Power up the board
- Connect the board to the PC through USB cable
- Download the USB driver file
- Go to "Device Manager"
- Find the target device that need to install the driver
- Right-click on the device and select Update Driver Software
- Select Browse my computer for driver software
- Browse you PC and select the driver file
- Click Next and wait until the driver is installed



#### 3.2 **GUI**

For GUI installation and operation, refer to the link below. GUI user manual is available for detailed description (CMIS GUI Manual).

#### https://www.multilaneinc.com/product.php?pn=ML4062-MCB

#### 4 Hardware Revision

- ML4062-MCB-RevA: Initial Version
- ML4062-MCB-RevB: MODPRS L connected to the micro
- ML4062-MCB-RevC1: VCC1 voltage Net is removed
- ML4062-MCB-RevC2:
  - voltage selection circuit is changed from coil to shunt jumper
  - L2, L3 and L4 coils are replaced with one of minimal internal resistance

### 5 Firmware Revision

• ML4062-MCB\_V1\_3: latest FW revision, compatible with the ML4062-MCB-RevC2 hardware.

### 6 Bootloader

Accessing in bootloader mode allows the user to reprogram the microcontroller, this is done as described below:

- 1. Connect a jumper on (P15) situated close to the microcontroller.
- 2. Connect a USB cable between the PC and Board.
- 3. Power up the board with a +3.3V supply.
- 4. LEDs (D2, D4) start blinking.
- 5. Remove jumper.
- 6. Open the software "Microchip USB HID Bootloader v2.3".
- 7. Click on "Open Hex File".
- 8. Choose the new FW to download.
- 9. Click on "Program/Verify".
- 10. Once the software finishes programming press on "Reset Device".
- 11. After reset the Firmware is successfully updated.



# **Revision History**

| Revision number | Date      | Description                       |
|-----------------|-----------|-----------------------------------|
| 0.1             | 8/10/2020 | <ul><li>Initial Version</li></ul> |
| 0.11            | 11/1/2021 | Format Update                     |



# **North America**

48521 Warm Springs Blvd. Suite 310 Fremont, CA 94539 USA +1 510 573 6388

# Worldwide

Houmal Technology Park Askarieh Main Road Houmal, Lebanon +961 81 794 455

#### Asia

14F-5/ Rm.5, 14F., No 295 Sec.2, Guangfu Rd. East Dist., Hsinchu City 300, Taiwan (R.O.C) +886 3 5744 591

NOU